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1. Introduction

In a Matrix-Differential Game, (MDG) a finite payoff matrix A is

given, and player I (II) tries to maximize (minimize) the payoff by picking

the proper row (column) . However, the choices of the two players are not

made simultaneously, so that the conventional result that the game value is

obtained when the two players use optimal mixed strategies does not hold.

Instead, a number o , with ^ a ^ 1 , is given, with the interpretation

that a is the relative reaction time of player I. The elements of A

are interpreted as payoff rates, with the payoff being at the rate a(i,j)

for a time o if player II has just picked column j (after which player

I picks a new row) , or for a time 1-a if player I has just picked row i

(after which player II picks a new column) . Play is assumed to go on

indefinitely, and the payoff fl(o) is defined to be the long run average

of the payoff rate. The words "long run" are of course relative to the

length of the time unit.

The idea of an MDG was invented by Danskin [1], who observed that the

ability to solve MDG ' s is a prerequisite for being able to solve for the

ft-value of a differential game, where the payoff matrix of the MDG would

be a Hamiltonian function involving the equations of motion. In fact, it

is non-separable differential games that provide most of the interest in

MDG's, since it can be shown that optimal strategies for playing MDG's

do not involve choosing random numbers. The spectre of the two players

trying to choose independent random numbers continuously in a differential

game has given rise to the ^-formulation (along with several other [2],

[3], and [A]), where the need for mixed strategies is eliminated by having

the players "take turns" in some sense or other.



Formally, an N x M MDG is a stochastic game with perfect information,

2MN positions (the position depends on whose move it is, hence the factor

of 2), and non-zero stop probabilities. The existence of the ^-value

and of stationary optimal strategies has therefore been proved by Gillete

in his paper on the subject [5], (His proof contained an error that was

subsequently corrected by Liggett and Lippman [6]). Our Theorem 1 goes on

to state that the Q-value and the optimal stationary strategies .must

satisfy certain "equilibrium equations" (2.6 and 2.7) that form the basis

of the computational procedure discussed in chapter 3. Theorem 2 shows

that our fl-value is the same as Danskin's, and Theorem 3 establishes some

elementary properties for the ft-value of a MDG. These three theorems,

together with the computational procedure of chapter 3, are the content

of this technical report.



2 . The Equilibrium Equations

Throughout this report the symbol A = [a(i,j)] will denote an

N x M matrix with real entries a(i,j) ; i = 1,...,N ; j = 1,...,M.

We further reserve the letters I and J to denote the sets of row and

column indices, respectively, i.e.

I = {1,.. .,N} , J = {1, ..
.
,M} .

The letter a will always denote a real number from the interval [0,1] .

Next let P be the set of all mappings from J to I , and let

Q. be the set of all mappings from I to J . A sequence

P = {pv
: pv

eP, v=l,2,...}

or a sequence

Q = {q
v

: qv
e£, v=l,2,...}

will be referred to as response strategy of player 1 or 2 respectively.

OO 00

The sets of all response strategies will be denoted P and <2 • A response

strategy P or Q such that p = p = ... = p or such that q = q~ = . . . = q

will be called stationary .

Let P = lp }eP and Q - iq leQ. be a pair of response strategies, and

let n be a positive integer. With any such pair (P
, Q) we now associate

a quantity H (P,Q|i ) , called the n-stage payoff given the row-predecessor

i el , and defined by
o J

1
n

(P,Q I i ) = - ) aa(i
1 , j ) + (l-a)a(i ,j ) ,n '

X| o n L
* v-l ,J V v' J v

where j =q(i -), i = p (j ) , v= 1>2,...
V V V-± V V V

Similarly, the n-stage payoff given the column-predecessor j eJ is defined by

n

H
n
(P

' Q
l j o

}
=
i l (1-0)8(^.1^) + aa(i

v , jv )

v=l



where this time

\ = pv (j v-l }
»

j v
=

qv (V '
v = 1 '

2-"
oo „oo

The triplet G(a) = (P , Q_ , A) with the sequences of payoffs H defined

as above will be referred to as matrix-differential game . (MDG)

We are now ready to state the basic definition.

00 00

Definition ; If there exist a pair of response strategies P* e P
,
Q* e Q.

and a real number fi(a) such that for any i el or j eJJ o J o

iiS H
n
(P*,Q*|i

o
) = 1& H

n
(P*,Q*|j

o
) = fi(a)

, (2.1)

00 00

and for any PeP , QeQ.

l^m sup H
n
(P,Q*|i

o
) < fi(a) , (2.2)

lim sup H (P,Q*|j ) < fi(a) , (2.3)
n-*00 n ' o

1^ inf H
n
(P*,Q|i

Q
) > fi(a)

, (2.4)

Hm inf H (P*,Q|j ) > fi(a)
,

(2.5)
n^-^ n o

then fi(a) is called the omega-value and P* and Q* optimal response

strategies of the MDG G(a).

Lemma: Let oo, x,,..., x , y_ , . . . ,y be a solution of the system of——

—

1 n 1 m

N + M equations :

x . + 00 = min[ca(i,j) + y.] , iel
,

(2.6a)
1

JeJ
3

y. + oj(l-a) - max[(l-a)a(i,j)+x.] , jeJ ,
(2.6b)

2 iel
X

let p*eP and q*eQ. be such that

x
±
+ oja = aa(i,q*(i)) + y A(i) , iel ,

(2.7a)

y + w(l-a) = (l-a)a(p*(j),j) + x *
( }

, jeJ. (2.7b)

Then (2.1) through (2.5) hold with fi(a) = u> and stationary

P* = {p*,p*,...} , Q* = {q*,q*,...} .



Proof: We begin with the inequality (2.2) . By (2.6b) we have for

every k e I
, j e J

y, + u)(l-a) > (l-a)a(k.j) + x,

so that in particular for j = q*(i)

Yq*(i)
+ a) ( 1-a > " (l-a)a(k,q*(i)) + x

k .

Substituting for y . ,. N into (2.7a) this becomesy q*(i)

x. + coa > aa(i,q*(i)) + (l-a)a (k,q*(i) ) + x - oo(l-a)
1 K

or

oo > aa(i,q*(i)) + (l-o)a(k,q*(i)) + x
R

- x
± , (2.8)

for every iel , kel . Let P = {p jeP ,

i el be arbitrary, let
o

i = q*(i ,) , i = P (j ) , V s8 1,2,...J v v-1 v v v

Substituting i = i , k = i into (2.8) and averaging over

v = 1 n we obtain

1
n

oo > H (P,Q*|i ) + - 7 x. - x.
n ' o n L

- l , l nv=l v v-1

— Jx.-x. I
= —

I x. -x. Is — maxijx.}
n . , l l.

. J nl l l I n . _ ^ i

n

v=l v v-1 no iel

which tends to zero as n -* °°
.

Hence (2.2) holds with ft(a) = oo and Q* = {q*,q*,...}

To prove (2.3) let this time j eJ arbitrary ,

i = P (j J , i = q*(i ) , V - 1,2,. ..
V V V-1 V n V

and substitute k = i , i = i in into (2.8) .

v ' v+1

Averaging over v = l,...n we obtain



1 1

n

w * H
n
(P,Q*|j

o
) - -[(l-o)a(i j

Q
) + Oa(i ,j )] + - [ x - x ,

V=l V v+l

the last two terms again tending to zero as n -> °°
.

Inequalities (2.4) and (2.5) follow from (2.6a) and (2.7b)

in analogous manner.

Finally to establish (2.1) we have from (2.7a,b)

0) = aa(i,q*(i)) + (l-a)a(p*(q*(i)),q*(i)) + x
p * (q

* (i))
" X

A
• iel »

from which by setting i = i = P*(j ) , J v
q*(i j) ,V = 1,2,...

we have

co = H (P*,Q*|i ) + - (x. - x.) ,n '
X| o n l l

n o

and (2.1) follows. The lemma is proved.

Remark 1 ; Investigation of the preceeding proof reveals that a slightly

stronger statem can be made. In fact we proved that there exists a constant

OO 00

C < °° such that for any Pe P
, QeQ

H (P,Q*|i ) < fi(a) + -
,

(2.2')
n ' o n

H
n
(P*,Q|i

o
) > fl(a) - £ ,

(2.4')

for every n = 1,2,..., and similarly for a column - predecessor j .

This also implies that the convergence in (2.1) is of order 0(l/n) .

With the aid of the lemma we now prove the main theorem about

MD games

.

Theorem 1 ; Every MD game G(a) , ae[0,l] has an omega-value and each

player has a stationary optimal response strategy. Further, for every

0e[O,l] the omega-value Q(o) is the unique number co satisfying the

system (2.6) and P* = {p*} , Q* = {q*} , where p* and q* satisfy

(2.7a) and (2.7b) respectively, are stationary optimal response strategies.



Proof : In view of the previous lemma and the fact that, according to its

definition, the omega-value must be unique, the theorem will follow as

long as we prove that the system (2.6) has always a solution.

To this end notice first that if x...... x is a solution of
1 n

the system of N equations:

x, = min max [Ga(k,j) + (1-C)a(i,j) + x.]

jeJ iel
X

(2.9)

1
N

- — 1 min max[Oa(£,j) + (l-a)a(i,j) + x.] , kel ,

£=1 jeJ iel
X

then a) , x
1
,..., x , y^

.

.., yM , where

1
N

w =
n 1 m i-n max[aa(£,j) + (l-a)a(i,j) + x.]

,

1=1 jeJ iel
X

y. = max [(l-a)a(i,j) + x ]
- cu(l-a)

,
jeJ ,

J iel

is a solution of the system (2.6) .

Call temporarily f (x , . . .
,x ) , kel the right-hand side of the k-th

K, _L IN

equation (2.9) . Since

1
N

|f
k
(x ,...,x )| < - ^ min max [aa(k,j) + (l-a)a(i.j) + x

±
]

1=1 jeJ iel

- min max [aa(£,j) + (l-a)a(i,j) + x.]|

jeJ iel

1
N

< — J max|max [aa(k,j) + (l-a)a(i,j) + x.]

1=1 jeJ iel
X

- max [aa(£,j) + (l-a)a(i,j) + x.]|

iel
X

1
N

< -
I max max| [aa(k,j) + (l-a)a(i,j)] - [aa(£,j) + (l-a)a(i, j) ]

|

1=1 jeJ iel

N
< -

I max|a(k,j) - a(£,j)| < 20 \\ A
|| , where

1=1 jeJ



A
I

= max max |a(i,j)|
,

iel jeJ
N

and since clearly I f, (x , ...,x ) = ,

k=l

the vector-valued function f_ = (f ,...,f ) maps the (N-l)-dimensional

hypercube

N

C = {(x ,...,x ) : I x. = , max|x.| < 2a|| A j|}

i=l iel

into itself. Next for any kel

I k l'**'
,X

N ~ k 1
'*'*' X

N
mm max
jeJ iel

[aa(i,j) + (l-a)a(k,j) + x ] - min max[aa(i,j)
jeJ iel

N

+ (l-a)a(k,j) + x'] + ^ I
1=1

mm max
jeJ iel

[aa(£,j) + (l-a)a(i,j) + x.']- min max [aa(£,j) + (l-a)a(i,j) + x.]
1

jeJ i£l
1

< max
iel

x .-x.
l l

1
N

+ -
I max

£=1 iel

x. -x

.

l l
= 2 max

iel

x.-x.
1 1

Hence the function _f is also continuous and therefore, by Brouwer Fixed

Point Theorem there exists (x n ,...,x. T ) e C such that
1 N

x, = r, (x , . . . j 3^.) > kel.

Thus the system (2.9) and consequently the system (2.6) has always a

solution and the theorem is proved.

John Danskin defined originally the omega-value of a MD game as

a limit of ordinary pure values of a sequence of games with perfect in-

formation ([2], see also [3]). The next theorem shows that Danskin'

s

definition and the one used in this paper are equivalent.



Theorem 2 : If Q(o) is the omega-value of a MD-game G(a) then for

every 1 flJ o
n

fi(a) = lim min max . . . min max — [ Oa 1 , .,1 , + (l-O)a(i , i ) ,

n-*» j.eJ i.el j eJ 1 el v=l _„ , rt
.11 J n n (2.10)

and for every i eJJ J o

"

1
n

Q(a) = lim max min ... max min - 7 (l-a)a(i , i , ) + aa(i , i )

n-i.I JlCj idjd n
v=l

^V-l11 n n
(2.11)

Pr oof : Denote temporarily

1 vW (i ,j,,i,,...,j ,i ) =— > aa(i ,,j ) + (l-a)a(i ,j ).n v
o' J l' 1' ,J n n n L

, v-l' J v v' J v

Let p*eP and q*e be as in (2.7) . By (2.2') and (2. A') of

Remark 1 we have for every n = 1,2,...

W
n
(i

o
,q*(i

o
),i

1
,q*(i

1
),...,q*(i

n_ 1
),i

n ) < fi(a) +~ (2.12)

for any sequence of row indices i , i,,... , and

W
n
(i

o ,J
1
,p*(J

1 ),...,J n ,p*(J n
)) > 0(a) - C/n , (2.13)

for any sequence of column indices j-i»j«t««« and any i el .

From (2.12) we obtain successively

max W
n
(i

of q*(i ),...,q*(i
n_ 1

)i
n

) < fl(0) + £
n

Q
min max W (i ,q*(i ),...,i ,,i ,i ) < ft(a) + -

i n o ^ o n-1 J n n nJ n n

Qmin max . . . min max W (i , i -,,..., i ,i ) < fi (a) +— .

n o 1 n n n
J
l

X
l J n \

Similarly from (2.13) we obtain eventually

Qmin max . . . min max W (i , i .,,..., i ,i ) > S2(a) + -

n o J 1 n n n
J
l

X
l

J n \

and (2.10) follows. (2.11) is proved in the same fashion.



To the end of this section let us investigate some simple properties

of the omega-value. From the definition or from the previous theorem it

is immediately obvious that

\l(0) = min max a(i,j)
,

jeJ iel

fi(l) = max min a(i,j)
iel jeJ

Also, it is easy to see that if the matrix A is reduced by successively

eliminating dominated rows and columns the omega-value fi(a) is not

affected. Another obvious property is that if the entries a(i,j) are

all multiplied by a positive constand a and/or an arbitrary constant

3 is added to all of them the omega-value changes accordingly while the

optimal response strategies remain unchanged. Some less obvious properties

of the omega-value are given in the following theorem.

Theorem 3 : The omega-value ^(a) of a MD game is a continuous, non-

increasing and finite piece-wise linear function of a e [0,1] .

Proof ; Let a e[0,l] , C e[0,l] . By Theorem 2

fi(a..) - Q(o )\ = |lim[ min max ... min max

-J
l 1

J n n

1 v— ) cafi ,,i ) +(l-a n )a(i ,j ) - min max
n L

n 1 v-l' J v' v
1 v ,J v'

V=l n n eJ i
n
elJ

l 1

1 r
• • • min max —

) a.a(i . ,i )+(l-0_)a(i ,i )]

j eJ i el v=lJ n n

10



n

< lim min max ... min max — V a n a(i , ,i )
n L 1 V-l V

n-**> j n eJ i n el i eJ i el v=lJ
l 1 J n n

+(l-a 1 )a(i ,1 ) - min max ... min max
1 V V

j eJ i el j eJ i el11 n n

1
n

- J a„a(i ,,j ) + (l-a n )a(i , j )n A
, 2 v-l ,J v 2 v' J v

v=l

n

< lim max max ... max max — V (o,-0„)
n-**> i-eJ i n el i eJ i el v=l11 J n n

a(i . ,j ) + (a -G n )a(i ,i )v-l v 2 1 v v

< 2
|
A |a

i
-Q„

I

, where again
|
A = max max a(i,j)

iel jeJ

Hence Sl(o) is continuous in ae[0,l] .

Next let

(i
l
j l' ••"W

be a finite sequence of distinct row and column indices such that

j v
=
«*<V ' Vl = P* (V .

V - L.—n .
i
m+i " i

x .

where p*eP and q*eQ. satisfy (2.7) . Clearly, such a sequence exists

for every ae[0,l] and may be called an optimal cycle. By (2.7) we have

x + wo = aa(i ,j ) + y ,
(2.14a)

v J v

y + oj(I-o) = (l-O)a(i ,j ) + x , v = l,...,m (2.14b)
J v v+1

11



Adding these equations and using the fact that x. = x.. we obtain
m+1

m m
mu) = a

J"
a(i ,j ) + (1-a) Y a (i ., ,j ) . (2.15)L

., V J v L
. v+1 v

v=l v=l

Since an optimal cycle exists for every ae[0,l] and since there is only

a finite number of possible optimal cycles continuity of fi(a) implies

that there must be a finite partition

= O < O- < .. . < =1
o 1 p

of the interval [o,l] such that in each interval [<J ,0, ] the omega-

value is a linear function of a , in particular

m m
fi(a) = - J a(i ,j ) +— y a(i in , j ) , a, . < a < a, . (2.16)y m L

-
v v ,J V y m ^ v V+l' J V y

' k-1 k
V=l v=l

Finally, since by (2.6b)

y + co (1-a) > (l-a)a(k,j) + x
fc

for every kel , jcJ we have by setting j = j , k = i

y + co(l-a) > (l-a)a(i j ) + x , V = 1 m ,

J v v

from which by adding these inequalities to the m equations (2.14a)

we obtain

m m
mw > a I a(i ,J ) + (1-a) \ a(±

v ,Jv ) . (2.17)

v=l v=l

Comparing (2.17) with (2.15) we see that

12



m m

I a(i
v ,j v

)

<J
a(i

v+1 ,j v ) ,

and hence by (2.16) £2 (a ) > tt(o ) . Thus the function fi(a) is

non-increasing and the theorem is proved.

13



3. Ergodic Pairs and a Method for Solving MDG's

Given any starting point and any pair of stationary response

strategies, the (row .column) pair will eventually repeat itself, since there

are only finitely many such pairs, and a minimal cycle of such pairs will

then repeat over and over. The payoff to player I will be the average

payoff over that cycle (2.16). If the cycle turns out not to depend on the

initial row or column, the pair of stationary response strategies will be

termed ergodic , and such a pair will be referred to as an ESP. An optimal

pair of stationary response strategies will be an OSP for whatever values

of a the pair is optimal. Note that whether or not a pair of strategies

is an ESP has nothing to do with the payoff matrix or a.

Since the £2-value does not depend on the starting point, an OSP

must be an ESP, except when an OSP has multiple cycles each of which has an

average payoff (formula 2.16) of £2 (a). Such OSP's will turn out to be of

some importance to our method, but let us ignore them for the moment, and

attempt to solve for the £2-value (we want the entire function &}(•), not

£2(a) for some particular a) using only ESP's.

Our method will be to first solve for £2(0) , and then attempt to

find £2(a) in adjoining intervals until finally we find an interval that

includes a = 1. When a = 0, £2(0) = min max a(i,j), p (j) is a row

th
jfJ ifI *

with the largest payoff in the j— column, and q (i) = j is a min max

* * * *
column. (p ,q ) is an ESP, since the only possible cycle with (p ,q ) is

(P (j ) >j ) > (P (j ) »j )i- Furthermore, (p ,q ) will be an OSP in some

maximal interval [0,o ], where possibly a = 0. In order to find o
,

we must solve equations (2.7) for x, y, and to as functions of a, after

which a will be the largest value of a for which (2.6) holds.

14



Before solving (2.7), we first note that an arbitrary function of

a can always be added to both sides of 2.6b and 2.7b. In order to obtain

linear expressions, it is convenient to let this function be ooa . If we

i

then let x. =x. + ojo , 2.6 and 2.7 become
l i

x = min[a a(i,j) + y 1, if I (3.6a)
j6J 2

y . + oj = maxIQra) a(i,j) + x.], jfJ (3.6b)
2 ifl

X

x. = a a(i,q (i)) + y
q
*
(i) ±̂ j

(3.7a)

* 1
y . + oj = (l-o) a(p (j),j) + x *

( 6J
(3.7b)

In the following, we will drop the on x. , and will not refer

again to (2.6) and (2.7).

* * _ _
Lemma: Let (p ,q ) be any ESP. Then the solution of (3.7) for x, y, oj

as functions of a is unique for oj , and unique for x, y except

that one x. or y . can be an arbitrary function of a. If the
i 3

arbitrary function is linear, so are x and y. The quantity oj

is a linear function of a in any case.

Proof: Let the unique cycle be (i- ,1, .. . . ,i ,i ). Let x. = cz(a) , ann ' 11 m Jm i.

arbitrary function. (3.7a) then defines y. , after which (3.7b)
J
l

defines x. , etc. Using this procedure, we can define x(y)
X
2

numbers for each row (column) in the cycle. Furthermore, (3.7b)

with i = i will be satisfied if oj is obtained from formulaJ m

(2.16). This defines all x(y) numbers for rows (columns) that

15



appear in the cycle in a manner consistent with (3.7). Let

i be a row that does not appear in the cycle, and let

A A
(i

1
,j

1
,i

2
,j

2
,...,i

m ,j m ) be such that j
y

= q (i
y

) , 1^ = p (jj ,

and j is the only column in the cycle (such a j will always

exist, on account of the uniqueness of the cycle). Since y.
••'m

is defined, we can use (3.7a) to obtain x. , then (3.7b) to

obtain y. , etc., until finally we obtain x. .

J m-1
X
l

Furthermore, since any other such sequence that contains i
1

will

also contain j.,.«-,j , there is no danger of obtaining a

conflicting definition of x. in the process of defining some

other x. or y.. Similar remarks hold for columns that do not
i J

appear in the cycle. Every x. and y. has therefore been

uniquely defined in a manner consistent with (3.7). If cz(o) is

linear, the linearity of x and y follows from the linearity

of (3.7). Since (2.16) is also linear, the lemma is proved.

We are now ready to describe the process of interval extension,

supposing that Q.(o) is already known for £ a ^ a . If the OSP (p ,q )

*
at a = a is actually an ESP, x.,y. and d will satisfy (3.6) at

o=a. Therefore, unless there are ties for the minimum in (3.6a) or the

A
maximum in (3.6b) when o = o , the same expressions will satisfy (3.6)

* aa aa * * *
for o £ o £ o , where a > a ; that is, (p ,q ) is actually an

* aa aa
OSP for o £o^o . The quantity a will be the smallest a for

which there is a tie. For definiteness , suppose there is a tie in (3.6a),

so that

£ £ AAA
t

±
= a a(i,j) + y = a a(i,q (i)) + y

q *(i)

16



* **
where j r q (i) . We form a new response strategy q (•) by defining

** ** *
,

* **
q (i) = j, and q (k) = q (k) for k 4 i- Then (p ,q ) is an OSP

** * **
at 0=0 . If it turns out that (p ,q ) is also an ESP, then we can

repeat the process of solving (3.7) for x.(cr), y.(a), and co(a) ,

increasing a until another tie is encountered in (3.6), etc.

Since we have a starting point (an OSP that is also an ESP at o = 0)

,

there is some hope that the process might map out ft(a) for ^ a <. 1 in

intervals, with an OSP/ESP for each interval. Two things are clear:

1) The process is failsafe in the sense that all answers are correct.

2) The process may not provide an answer. This could happen either

because the process gets stuck at a certain a (multiple ties

* **
might cause this) , or because (p ,q ) is at some stage not

and ESP.

Computational experience with matrices chosen at random has shown that the

process will always (?) provide the answer for (3 x 3) matrices, but that

it will sometimes fail on (9 x 9) matrices and will nearly always fail on

(18 x 18) matrices. When it fails, it fails because it discovers an OSP

that is not an ESP.

This reason for failure is somewhat suprising. If an OSP that is

not an ESP is to hold over an interval , then (2.16) must be the same

function of o for two or more disjoint cycles. If the a(i,j) are chosen

at random, the probability of this is 0. In fact, the probability is

that there could be an OSP with three or more cycles for any value of a.

However, the probability is not zero that there can exist particular

values of a at which an OSP has exactly two disjoint cycles, and it is

this type of OSP that the above procedure tends to discover. The problem,

17



* **
then, is this: Given ESP, that is an OSP over some interval [c ,o ]

**
an d OSP at a that is not an ESP, how can we discover an ESP„ that

** *** *** **
is OSP over [a ,o ] where o > a ?

From ESP , we can obtain numbers x.,y., and ui that satisfy

(3.6) at a = a . There is a tie in one of the equations (3.6), which

we assume for convenience to be in (3.6a):

x = a a(i,j ) + y = a a(i,j„) + y ,

where

j 1
= q (i) and j 2

= q (i) ,

ESP
1

= (p ,q ), and OSP
;L

= (p ,q )

We assume OSP.. has exactly two cycles, one of which must be the ESP.

cycle. The rows and columns can be partitioned into S.. and S_, where

S.. includes all rows and columns in the ESP cycle, plus all those rows

and columns that OSP maps into the ESP cycle, and S is defined

similarly for the other cycle. Define x(6) and y(6) by

x.(6) =

yj (6) =

x. if ifS,
i 1

x. - 5 if i£S„
l 2

Yj if JfS
1

y - 6 if jCS
2

18



Since (3.7) with OSP, never compares a row in S with a column in S ,

or a row in S„ with a column in S , x(6) ,y(6) and OSP will solve

(3.7) regardless of 6. Let 6 be the largest 6 such that x(6),y(6)

satisfy (3.6). Since we have assumed there is only one tie when 6=0,

6 > 0. For < 6 < 6, there are no ties. When 6 = 6, there is at

least one tie, and we assume there is exactly one. Resolving the tie one

way, we obtain OSP . Resolving the tie the other way, we obtain 0SP
9

different from OSP and ESP . If 0SP
2

is actually ESP„, we re-solve

(3.7) and proceed with interval extension. If 0SP~ is not ESP, then with

probability one it has the same two cycles as OSP , since otherwise there

would be three distinct cycles with the same average payoff in the sense

(2.16). Let S be all those rows and columns that 0SP„ maps to the

first (original ESP ) cycle, and similarly for S~ . Now repeat the

process of subtracting 6 from every x. or y . with subscript in S„

until still a different tie is revealed, with corresponding OSP.,, etc.

Sooner or later a new ESP will be discovered, and the basic process of

interval extension can continue.

The above is not intended to be a proof that the procedure will

work, but only as an explanation of the process used by a FORTRAN program

called MATDIF to solve differential games. MATDIF is failsafe, in the

sense that it deals only with solutions of (3.6) and (3.7), but it has not

been proved that MATDIF will always provide an answer for all of [0,1].

However, MATDIF has not failed to produce an answer for any of the ap-

proximately 100 test matrices with elements chosen to be uniform random

numbers between and 100. The program compiles in about 10 sees on the

NPS IBM360/67, and the run time is approximately 120(M/50) ' (N/50)

19



seconds (see Table 1). The program is available from Washburn. In the

future, a proof that MATDIF or a procedure modified to account for

degeneracies will always provide an answer will be provided.
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T(M,N) . 120|^)
1-5

(f
J

1 ''

N. N

M \.
9 18 50

.
. 6 seconds 1.5 seconds

i

9

.

(20 runs) (30 runs)

i 1.5 seconds 4.5 seconds i

18

(30 runs) ( 2 runs)

10 seconds 120 seconds

50

(10 runs) (3 runs)
i

Table 1 Average run times for MATDIF in seconds
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Example: Figure 1 shows Q(o) for a typical 18 x 18 game. There are 20

distinct linear segments in this case. MATDIF actually considers 70

different ESP's, but many of the (distinct) ESP ' s have the same cycle.

The solution proceeds by interval extension up to a = a, = .53169. The

ESP, that is OSP at a, and for slightly smaller values is illustrated

in figure 2; each column has an "x" corresponding to I's choice in the

column, and each row has an "o" corresponding to II's choice in the row.

So x's move horizontally to o's, and o's move vertically to x's. The only

cycle is shown solid in the figure.

The OSP following ESP.. is identical to ESP, except that the

in row 16 is moved from column 11 to column 2. A new cycle forms, shown

as a dashed line. Both cycles have the same average payoff. The reader

might amuse himself by delineating S.. and S
?

. 0SP- is formed by moving

the in row 6 from column 3 to column 6, and still has the same two cycles

OSP is formed by moving the x in column 16 from row 16 to row 10, and

also has the same two cycles. Finally, OSP, is formed by moving the in

row 5 from column 17 to column 8, leaving only the dashed cycle and hence

a new ESP. This ESP is valid for o £ a <. .5402, and only ESP's are

encountered for larger a. The run time for solving this game is 4.12

seconds

.
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FIGURE 1

ft (a) for an 18 x 18 game
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